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Novel computer architectures such as graphics processing units (GPU), many-core chips, and 
IBM BlueGene are becoming common in the high-performance computing (HPC) world. Existing 
physics application codes require major modifications to perform well on these architectures. LANL 
has developed the PENNANT mini-app as a research tool for finding efficient implementations of 
unstructured mesh physics algorithms. It contains mesh data structures and a few physics algorithms 
adapted from the LANL shock physics code FLAG and will provide insights on how to optimize FLAG 
and other similar codes for future architectures. 

The HPC world is entering a major transition. Novel architectures 
such as GPUs, many-core chips, and IBM’s BlueGene are becoming 

common in supercomputer clusters. Architectures such as these provide 
high computational performance combined with low power usage, and 
are likely to be used in future systems such as the “exascale” systems 
being discussed in the international HPC community.

These systems will pose significant challenges to all scientific software 
developers—introducing new programming models to manage the 
increased hardware complexity and requiring major rewrites of existing 
software. They will be particularly challenging for developers of 
algorithms for general unstructured meshes—that is, computational 
meshes containing arbitrary polygons (in 2D) or polyhedra (in 3D). An 
example is shown in Fig. 1. These meshes have irregular connectivity 
and memory usage patterns, making them more difficult to work with 

than meshes with more regular structure. As a result, 
unstructured mesh methods tend to lag behind other types 
of physics methods in advanced architecture research.

However, since unstructured mesh codes are common at 
LANL and elsewhere, it is important to find ways to run 
such codes efficiently on these architectures. As a tool 
for research in this area, LANL has developed a small 
application, or mini-app, called PENNANT [5].

PENNANT contains approximately 2200 lines of C++ 
source code. It implements a small subset of the physics 
of the LANL shock physics application FLAG. Like FLAG, 
it operates on general unstructured meshes (meshes 

containing arbitrary polygons). It currently has implementations for 
serial and multi-core processors–the multi-core version uses the standard 
OpenMP programming model. A GPU implementation using the CUDA 
programming language is in progress, building on previous research [4]. 

PENNANT provides the following basic physics capabilities from FLAG:

• Lagrangian staggered grid hydrodynamics (SGH) [2] for basic  
   fluid flow 

• Single material, gamma-law gas equation of state 

• Temporary Triangular Subzoning (TTS) [3] for subzonal pressures 

• Campbell-Shashkov tensor artificial viscosity [1] 

These capabilities are sufficient to run a few simple test problems in 
shock physics.

The following PENNANT timing results were obtained on the Darwin 
research cluster at LANL. The nodes of this cluster have 4 12-core AMD 
Opteron 6168 CPUs, for a total of 48 cores, each running at 1.90 GHz. 
The nodes used in this study also have NVidia M2090 GPUs attached.

Two different versions of the Noh test problem [6], nohsquare and 
nohpoly, were used. A sample output from nohpoly is shown in Fig. 2.

Figure 3 shows timings from a scaling study done using the OpenMP 
version with varying numbers of threads. The dashed line shows ideal 
scaling of the serial version, for comparison. For both problems, the 
OpenMP implementation of PENNANT scales well on up to 32 cores, but 
starts to level off when using the full 48 cores of a Darwin node. The 32-
core runs showed a speedup of 22× over the serial version.

A GPU implementation is in progress. Currently the force calculation is 
running on the GPU, and timings on this portion of the code show about 
a 14× to 17× speedup (problem-dependent) over the corresponding 
serial code. Past experience suggests that the full GPU version, when 
complete, will show a similar speedup.

PENNANT demonstrates that unstructured mesh physics can be 
implemented efficiently on multicore processors and GPUs. It also shows 

Fig. 1. Example of an unstructured 
mesh.
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that a small, self-contained code can capture the basic 
physics algorithms and data structures of larger multi-
physics codes that use unstructured meshes.

Future development plans for PENNANT at LANL include 

• additional test problems; 

• additional optimizations for serial and multicore 
   versions; 

• multi-node version using the Message-Passing 
   Interface (MPI) library to distribute work across the 
   nodes in a cluster; 

• GPU versions using other programming models 
   (OpenCL and/or OpenACC);

• and testing on Intel Many-Integrated-Cores (MIC)  
   architecture.

PENNANT will also be made available to other research 
sites, hardware vendors, and compiler vendors as a research 
tool to help make unstructured mesh algorithms run more 
effectively on future hardware platforms and programming 
models.

For more information contact Charles R. Ferenbaugh at 
cferenba@lanl.gov. 
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Fig. 2. PENNANT output for 
Noh problem on a mesh with 
hexagonal cells.

Fig. 3. PENNANT timings 
running for nohsquare and 
nohpoly test problems, using up 
to 48 cores.


